BCBDEV.COM: Articles Page 1 of 8

BCBDEV.COM

HoME | ARTICLEEl EDDKSl DowWNLOAD | FAQs | TiFs |

.IHARTICLES

Using Visual C++ DLLs in a C++Builder Project

It is likely that one day your boss will ask you if you can create a GUI with C++Builder that
interfaces to an existing 32 bit DLL compiled with Microsoft Visual C++. Often times, the original
DLL source code won't be available to you, either because the DLL comes from a third party
vendor, or because the 22 year old intern just deleted the \ DLL\ SRC directory from the network.
Given a DLL and a header file, this article shows you how to call the DLL from your C++Builder
project.

Calling DLL functions from a C++Builder project
The problem with Visual C++ DLLs

Step 1: Identify calling conventions used by the Visual C++ DLL
Step 2: Examine the linker names in the DLL

Step 3: Generate an import library for the Visual C++ DLL

Step 4: Add the import library to your project

Conclusion

Calling DLL functions from a C++Builder project

Calling a DLL that was created with Visual C++ presents C++Builder programmers with some
unique challenges. Before we attempt to tackle DLLs generated by Visual C++, it may be
beneficial to review how you call a DLL that was created with C++Builder. A DLL that was
created with C++Builder presents fewer roadblocks than one that was made by Visual C++.

You need to gather three ingredients in order to call a DLL function from your C++Builder
program: the DLL itself, a header file with function prototypes, and an import library (you could
load the library at runtime instead of using an import library, but we will stick to the import library
method for simplicity). To call a DLL function, add the import library to your C++Builder project
by selecting the Project | Add To Project menu option in C++Builder. Next, insert a #i ncl ude
statement for the DLL header file in the C++ source file that needs to call one of the DLL
functions. The last step is to add the code that calls the DLL function.

Listings A and B contain source code for a DLL that can serve as a test DLL. Notice that the test
code implements two different calling conventions (__stdcal | and __cdecl). This is for a very
good reason. When you try to call a DLL that was compiled with Visual C++, most of your
headaches will result from disagreements due to calling conventions. Also notice that one function
does not explicitly list the calling convention that it uses. This unknown function will act as a
measuring stick for DLL functions that don't list their calling convention.

R e
/1 Listing A- DLL.H

#i fdef __ cpl uspl us

file://C:\Documents%20and%?20Settings\jcrawfor\My%20Documents\down\update epl\B... 2/16/2003

BCBDEV.COM: Articles

extern "C' {
#endi f

#ifdef BU LD DLL

#defi ne FUNCTI ON __ decl spec(dl | export)
#el se

#define FUNCTI ON __ decl spec(dllinport)
#endi f

FUNCTION int __stdcall StdCal | Function(int Val ue);
FUNCTION int __cdecl Cdecl Function (int Value);
FUNCTI ON i nt UnknownFunction(int Val ue);
#i fdef __cpl usplus

}

#endi f

R R R R R

//Listing B: DLL.C

#define BU LD DLL_
#i nclude "dl . h"

FUNCTION int __stdcall StdCall Function(int Val ue)

{

}

FUNCTION int __cdecl Cdecl Function(int Val ue)
{

}

FUNCTI ON i nt UnknownFunction(int Val ue)
{

}

return Value + 1;

return Value + 2;

return Val ue;

Page 2 of 8

To create a test DLL from Listing A and Listing B, open up C++Builder and bring up the Object
Repository by selecting the File | New menu option. Select the DLL icon and click the OK button.
C++Builder responds by creating a new project with a single source file. That file will contain a
DLL entry point function and some include statements. Now select File | New Unit. Save the new
unit as DLL. CPP. Cut and paste the text from Listing A and insert it into the header file DLL. H. Then

copy the code from Listing B and insert it into DLL. CPP. Make sure that the #def i ne for
_BUILD_DLL_ is placed above the include statement for DLL. H.

Save the project as BCBDLL. BPR. Next, compile the project and take a look at the files produced.

C++Builder generates both a DLL and an import library with a . LI B extension.

At this point, you have the three ingredients needed to call a DLL from a C++Builder project: the
DLL itself, a header file for function prototypes, and an import library to link with. Now we need a
C++Builder project that will try to call the DLL functions. Create a new project in C++Builder and
save it to your hard drive. Copy the DLL, the import library, and the DLL. Hheader file from DLL
project to this new project. Select the Project | Add To Project menu option and add the LIB file to
the project. Next, add a #i ncl ude statement in the main unit that includes DLL. H. Finally, add code

file://C:\Documents%20and%?20Settings\jcrawfor\My%20Documents\down\update epl\B...

2/16/2003

BCBDEV.COM: Articles Page 3 of 8

that calls the DLL functions. Listing C shows code that calls each the DLL functions from Listing
A and B.

/1 Listing C. MAINFORM CPP - DLLTest program
#i ncl ude <vcl\vcl.h>
#pragma hdr st op

#i ncl ude " MAI NFORM h"
#i ncl ude "dl|.h"

#pragma resource "*.df ni
TFor mL *For ni;

[I
__fastcall TForml:: TFor mi(TConponent * Owaner)
TFor m Oaner)
{
}
I PR

void _ fastcall TForml::Buttonld ick(TCbject *Sender)

int Value = StrTolnt(Editl->Text);
int Result= StdCal | Function(Val ue);
Resul t Label - >Caption = IntToStr(Result);

}
R R
void _ fastcall TForml::Button2C ick(TCbject *Sender)
{

int Value = StrTolnt(Editl->Text);

int Result= Cdecl Functi on(Val ue);

Resul t Label - >Caption = IntToStr(Result);
}
R R
void _ fastcall TForml::Button3Cd ick(TCbject *Sender)
{

int Value = StrTolnt(Editl->Text);

i nt Result= UnknownFuncti on(Val ue);

Resul t Label ->Caption = IntToStr(Result);
}

The problem with Visual C++ DLLs

In an ideal world, calling a DLL created with Visual C++ would be no more difficult than calling a
DLL built with C++Builder. Unfortunately, Borland and Microsoft disagree on several points. For
starters, Borland and Microsoft disagree on file formats for OBJs and import library files (Visual
C++ uses the COFF library format while Borland uses OMF). This means that you can't add a
Microsoft generated import library to a C++Builder project. Thanks to the Borland | MPLI B utility,
the file format differences are surmountable.

The two products also disagree on linker naming conventions. This turns out to be the primary
hurdle when trying to call a Visual C++ DLL from C++Builder. Every function in a DLL or OBJ
has a linker name. The linker uses the linker name to resolve functions that were protoyped during
compile time. The linker will generate an unresolved external error if it can't find a function with a
linker name that it thinks is needed by the program.

file://C:\Documents%20and%?20Settings\jcrawfor\My%20Documents\down\update epl\B... 2/16/2003

BCBDEV.COM: Articles Page 4 of 8

With regard to linker function names, Borland and Microsoft disagree on these points:

e - Visual C++ sometimes decorates exported __st dcal | functions.
e 2- Borland C++Builder expects imported __cdecl functions to be decorated.

So why is this such a big deal? Take disagreement #1 regarding the __stdcal | calling convention.
If you create a DLL with Visual C++ that contains a __st dcal | function called MyFuncti on(),
Visual C++ will give the function a linker name that looks like _MyFuncti on@. When the Borland
linker tries to resolve calls made to this function, it expects to find a function with the name
MyFunct i on. Since the import library for the Visual C++ DLL doesn't contain a function called
MyFunct i on, the Borland linker reports an unresolved external, which means it couldn't find the
function.

Your attack strategy for overcoming these three problems will depend on how the Visual C++ DLL
was compiled. I have broken the process into four steps.

Step 1: Identify calling conventions used by the Visual C++ DLL

In order to combat the naming convention entanglements, you must first determine what calling
conventions are used by functions in the DLL. You can determine this by investigating the header
file for the DLL. The function prototypes in the DLL header should look something like this:

__decl spec(dl l'inport) void CALLI NG CONVENTI ON MyFunction(int nArg);

CALLI NG_CONVENTI ON should be __stdcal | or __cdecl (see Listing A for concrete examples). In
many cases, the calling convention won't be specified, in which case it defaults to __cdecl .

Step 2: Examine the linker names in the DLL

If step 1 reveals that the DLL utilizes the __stdcal | calling convention, you will need to examine
the DLL to determine the naming convention that Visual C++ followed when it created the DLL.
Visual C++ decorates __stdcal | functions by default, but the DLL programmer can prohibit name
decorations if they add a DEF file to their project. Your work will be slightly more tedious if the
DLL supplier did not use a DEF file.

The command line TDUVP utility allows you to examine the linker names of functions exported by
the DLL. The following command invokes TDUMP on a DLL.

TDUWP -ee -m MYDLL. DLL > MYDLL. LST

TDUWP can report a ton of information about the DLL. We're only interested in functions exported
by the DLL. The - ee command option instructs TDUWP to list only export information. The - m
switch tells TDUVP to show the DLL functions in their raw format. Without the - mswitch, TDUMP
would attempt to de-mangle decorated functions into a human readable format. If the DLL is large,
you may want to redirect the output of TDUMP to a file (via the > MYDLL. LST appendage).

The TDUWP output for the test DLL in Listing A and B looks like this:

file://C:\Documents%20and%?20Settings\jcrawfor\My%20Documents\down\update epl\B... 2/16/2003

BCBDEV.COM: Articles Page 5 of 8

Turbo Dunp Version 5.0.16.4 Copyright (c) 1988, 1998 Borl and I nternational
Di splay of File DLL.DLL

EXPORT ord: 0000=" Cdecl| Functi on'
EXPORT ord: 0002=" UnknownFuncti on'
EXPORT ord: 0001="_StdcCal | Functi on@'

Notice the leading underscore and the trailing @ on the __stdcal | function. The __cdecl and the
unknown function don't contain any decorations. If the Visual C++ DLL had been compiled with a
DEF file, the decorations on the __stdcal | function would not be present.

Step 3: Generate an import library for the Visual C++ DLL

Here comes the hard part. Due to the library file format differences between C++Builder and
Visual C++, you cannot add an import library created with Visual C++ to your C++Builder project.
You must create an OMF import library using the command line tools that come with C++Builder.
Depending out what you found in the first two steps, this step will either go smoothly, or it could
take some time.

As stated earlier, C++Builder and Visual C++ don't agree on how functions should be named in a
DLL. Due to naming convention differences, you will need to create an aliased import library if the
DLL implements calling conventions where C++Builder and Visual C++ disagree. Table A lists the
areas of disagreement.

Table A: Visual C++ and C++Buil der nami ng conventions

Calling convention VC++ nane VC++ (DEF used) C++Bui | der Name
__stdcall _MyFunction@ MyFuncti on MyFuncti on
__cdecl MyFuncti on MyFuncti on _MyFuncti on

The C++Builder column lists function names that the Borland linker expects to see. The first Visual
C++ column lists the linker names that Visual C++ generates when the Visual C++ project does not
utilize a DEF file. The second Visual C++ column contains linker names that Visual C++ creates
when a DEF file is used. For things to go smoothly, the C++Builder name should agree with the
Visual C++ name. Notice that the two products agree in only one place: __st dcal | functions
where the Visual C++ project contained a DEF file. For the remaining scenarios, you will need to
create an import library that aliases the Visual C++ name to a C++Builder compatible name.

Table A shows that there are several combinations that you may need to deal with when creating
the import library. I have separated the combinations into two cases.

Case 1: The DLL contains only __st dcal | functions and the DLL vendor utilized a DEF file.

Table A reveals that VC++ and C++Builder agree only when the DLL uses __stdcal | functions.
Furthermore, the DLL must be compiled with a DEF file to prevent VC++ from decorating the
linker names. The header file will tell you if the __stdcal | calling convention was used (Step 1),
and TDUWP will reveal whether or not the functions are decorated (Step 2). If the DLL contains
__stdcal | functions that are not decorated, then Visual C++ and C++Builder agree on how the
functions should be named. You can create an import library by running | MPLI B on the DLL. No

file://C:\Documents%20and%?20Settings\jcrawfor\My%20Documents\down\update epl\B... 2/16/2003

BCBDEV.COM: Articles Page 6 of 8

aliases are needed.

| MPLI B works like this:

| MPLIB (destination lib nane) (source dll)

For example,

IMPLIB nydl | .1ib nydl|.dll
Create the import library and move on to step 4.
Case 2: The DLL contains __cdecl functions or decorated __st dcal | functions.

If your DLL vendor is adamant about creating DLLs that are compiler independent, then you have
a good chance of falling into the Case 1 category. Unfortunately, odds are you won't fall into the
Case 1 group for several reasons. For one, the calling convention defaults to __cdecl if the DLL
vendor omits a calling convention when prototyping the functions, and __cdecl forces you into
Case 2. Secondly, even if your vendor has utilized the __st dcal I calling convention, they
probably neglected to utilize a DEF file to strip the Visual C++ decorartions.

However you got here, Good Day, and welcome to Case 2. You're stuck with a DLL whose
function names don't agree with C++Builder. Your only way out of this mess is to create an import
library that aliases the Visual C++ function names into a format compatible with C++Builder.
Fortunately, the C++Builder command line tools allow you to create an aliased import library.

The first step is to create a DEF file from the Visual C++ DLL by using the | MPDEF program that
comes with C++Builder. | MPDEF creates a DEF file that lists all of the functions exported by the
DLL. You invoke | MPDEF like this:

| MPDEF (Destination DEF file) (source DLL file).

For example

| MPDEF nydl | . def nydil.dll

After running | MPDEF, open the resulting DEF file using the editor of your choice. When the DLL
source in Listing A and B is compiled with Visual C++, the DEF file created by | MPDEF looks like
this:

LI BRARY DLL. DLL

EXPORTS
Cdecl Functi on (@
UnknownFuncti on @

_StdCal | Functi on@ St dCal | Functi on @

The next step is to alter the DEF file so it aliases the DLL functions into names that C++Builder
will like. You can alias a function by listing a C++Builder compatible name followed by the
original Visual C++ linker name. For the test DLL in Listing A and B, the aliased DEF looks like
this:

file://C:\Documents%20and%?20Settings\jcrawfor\My%20Documents\down\update epl\B... 2/16/2003

BCBDEV.COM: Articles Page 7 of 8

EXPORTS
; use this type of aliasing
; (Borland nane) (Nanme exported by Visual C++)
_Cdecl Function Cdecl Functi on
_UnknownFuncti on UnknownFuncti on
StdCal | Functi on _StdcCal | Functi on@

Notice that the function names on the left match the Borland compatible names from Table A. The
function names on the right are the actual linker names of the functions in the Visual C++ DLL.

The final step is to create an aliased import library from the aliased DEF file. Once again, you rely
on the | MPLI B utility, except that this time, you pass | MPLI B the aliased DEF file as its source file
instead of the original DLL. The format is

I MPLIB (dest lib file) (source def file)

For example

I MPLIB nydl . 1ib nydl | . def

Create the import library and move on to step 4. You may want to examine the import library first
to ensure that each DLL function appears in a naming format that C++Builder agrees with. You can
use the TLI B utility to inspect the import library.

TLIB nydl I .1ib, nydll.Ist

The list file for the test DLL looks like this:

Publ i cs by nodul e

StdCal | Function size = 0
StdCal | Functi on

_Cdecl Function size =0
_Cdecl Function

_UnknownFunction size =0
_UnknownFuncti on

Step 4: Add the import library to your project

Once you create an import library for the Visual C++ DLL, you can add the import library to your
C++Builder project using the Project | Add to Project menu option. You use the import library
without regard to whether the import library contains aliases or not. After adding the import library
to your project, build your project and see if you can successfully link.

Conclusion:

This article demonstrated how you can call functions in a Visual C++ DLL from a C++Builder

project. The techniques work with C++Builder 1 and C++Builder 3, and DLLs built with Visual
C++4.X or Visual C++ 5 (I haven't tested Visual C++ 6 yet).

file://C:\Documents%20and%?20Settings\jcrawfor\My%20Documents\down\update epl\B... 2/16/2003

BCBDEV.COM: Articles Page 8 of 8

You may have noticed that this article only discusses how to call C style functions in a DLL. No
attempt is made to call methods of an object where the code for the class resides in a Visual C++
DLL. C++ DLLs present an even greater array of problems because linker names for member
functions are mangled. The compiler employs a name mangling scheme in order to support
function overloading. Unfortunately, the C++ standard does not specify how a compiler should
mangle class methods. Without a strict standard in place, Borland and Microsoft have each
developed their own techniques for name mangling, and the two conventions are not compatible. In
theory, you could use the same aliasing technique to call member functions of a class that resides in
a DLL. However, you may want to consider creating a COM object instead. COM introduces many
of its own problems, but it does enforce a standard way of calling methods of an object. A COM
object created by Visual C++ can be called from any development environment, including both
Delphi and C++Builder.

C++Builder 3.0 introduced a new command line utility called COFFt oOVF. EXE. This utility can
convert a Visual C++ import library to a C++Builder import library. Furthermore, the program will
automatically alias __cdecl functions from the Visual C++ format to the C++Builder format. The
automatic aliasing can simplify Step 3 if the DLL exclusively uses the __cdecl calling convention.

Copyright © 1997-2002 by Harold Howe.
All rights reserved.

file://C:\Documents%20and%?20Settings\jcrawfor\My%20Documents\down\update epl\B... 2/16/2003

