
September 27th, 2002 USB I2C/IO API User’s Guide

API User’s Guide

for the

USB I2C/IO
 Universal Serial Bus Interface Module

DeVaSys

http://www.devasys.com/

Revision 0.1.04
September 27th, 2002

Please send any comment to support@devasys.com

Copyright © 2001, 2002 DeVaSys 1

http://www.devasys.com/
mailto:support@devasys.com

September 27th, 2002 USB I2C/IO API User’s Guide

Table of contents

Copyright © 2001, 2002 DeVaSys 2

September 27th, 2002 USB I2C/IO API User’s Guide

Table of contents ..2

Introduction..4
Revision History..5
Summary...5
Scope..5

Tutorial ...6
Devices, device driver instances, and handles..7
An example Win32 console application ...7

API Functions..8
API Overview..9
API Functions Summary ... 10
GetDllVersion ... 11
GetDriverVersion... 12
GetFirmwareVersion .. 13
GetDeviceCount .. 14
GetDeviceInfo... 15
GetSerialId... 16
DetectDevice .. 17
OpenDeviceInstance.. 18
CloseDeviceInstance.. 19
OpenDeviceBySerialId.. 20
ConfigIoPorts.. 21
GetIoConfig.. 22
ReadIoPorts ... 23
WriteIoPorts ... 24
ReadI2c... 25
WriteI2c .. 26
ReadDebugBuffer .. 27

I2C Transactions..28
Overview ... 29
Implementation .. 29

Copyright © 2001, 2002 DeVaSys 3

September 27th, 2002 USB I2C/IO API User’s Guide

Introduction

Copyright © 2001, 2002 DeVaSys 4

September 27th, 2002 USB I2C/IO API User’s Guide

Revision History

Rev. 0.1.04, September 27th, 2002 – Michael DeVault

Added the GetIoConfig function.
Added the I2C section.

Rev. 0.1.03, February 20th, 2001 – Michael DeVault

Fixed errors involving incorrect Port C bit mapping for the ReadIoPorts, WriteIoPorts, and
ConfigIoPorts .

Rev. 0.1.02, February 2nd, 2001 – Michael DeVault

Fixed some formatting problems and typographical errors.

Rev. 0.1.01, February 1st, 2001 – Michael DeVault

Added the Introduction section.

Fixed two erroneous references to a constant named INVALID_FILE_HANDLE for
OpenDeviceInstance and OpenDeviceBySerialId functions. The correct constant is
INVALID_HANDLE_VALUE.

Revised the example code in the Tutorial section.

Rev. 0.1.00, January 25th, 2001 – Michael DeVault

 Original Document

Summary

This document provides information to assist engineers using the DeVaSys UsbI2cIo USB interface
hardware, as well as the corresponding applications programming interface (API) in their designs.

Scope

This is a technical document and is intended for use by engineers with experience in various aspects
of electronic hardware design, the ‘C’ programming language, and the Windows 98 operating
system. Only information specific to the use of the UsbI2cIo hardware and API software is
provided.

Copyright © 2001, 2002 DeVaSys 5

September 27th, 2002 USB I2C/IO API User’s Guide

Tutorial

Copyright © 2001, 2002 DeVaSys 6

September 27th, 2002 USB I2C/IO API User’s Guide

Devices, device driver instances, and handles

Each USB I2C/Io board you attach to your host P.C. is a device. For each attached device, Windows
will create an instance of the device driver in memory. In order to communicate with a device, you
must first obtain a handle to that particular device’s driver instance. Most of the functions provided
in this API require a parameter called “HANDLE hDevInstance” which is a handle to the device driver
instance for the particular device with which you wish to communicate.

An example Win32 console application

/*
 example.c – a simple application

 Note:
 This example uses implicit linking to the dll functions, and requires the UsbI2cIo.lib file.
 Explicit linking is also supported, and is recommended for most applications.
*/

#include <windows.h>
#include <stdio.h>
#include "UsbI2cIo.h"

void __cdecl main(void) {

HANDLE hDevInstance = INVALID_HANDLE_VALUE; // device instance handle

// attempt to open device UsbI2cIo0 (instance 0 of the device with symbolic name UsbI2cIo)
hDevInstance = DAPI_OpenDeviceInstance("UsbI2cIo", 0);

if(hDevInstance != INVALID_HANDLE_VALUE) {

// success - device instance handle opened
printf("Opened device UsbI2cIo0\n");

// configure all I/O ports for output
DAPI_ConfigIoPorts(hDevInstance, 0x00000000); // 0 = output, 1 = input
printf("Configured all I/O ports as outputs\n");

// clear all bits except A.0 which will be set
DAPI_WriteIoPorts(hDevInstance, 0x00000001, 0xFFFFFFFF);
printf("Cleared all port bits to 0, with the exception of A.0 which was set to 1\n");

// now set bit B.7, and clear bit A.0, leave other bits unmodified
DAPI_WriteIoPorts(hDevInstance, 0x00008000, 0x00008001);
printf("Set bit B.7 and cleared bit A.0, left other bits unmodified\n");

 }
 else {

printf("Failed to open a handle to device UsbI2cIo0\n");
}

if(hDevInstance != INVALID_HANDLE_VALUE) {

// close handle to device instance
 DAPI_CloseDeviceInstance(hDevInstance);
}

}

< Much more information will be added to the tutorial section in future revisions of this document >

Copyright © 2001, 2002 DeVaSys 7

September 27th, 2002 USB I2C/IO API User’s Guide

API Functions

Copyright © 2001, 2002 DeVaSys 8

September 27th, 2002 USB I2C/IO API User’s Guide

API Overview

The USB I2C/IO API provides a set of ‘C’ functions for discovering and communicating with attached
USB I2C/IO devices. The API is implemented as a DLL (dynamically linked library) file which must
be installed on your P.C. host.

The API provides support for the following tasks:

• Obtaining version information for the device firmware, device driver, and API dll
• Obtaining a list of attached USB I2C/IO devices.
• Opening and closing handles to devices
• Obtaining the Serial Id of a device (unique identifier for each device)
• Configuring, Reading, and Writing the 20 digital I/O ports of a device,
• Generating I2C bus transactions on a devices.
• Obtaining debug information from a device.

Comments

See the Tutorial Section for an example on how to use the API.

Copyright © 2001, 2002 DeVaSys 9

September 27th, 2002 USB I2C/IO API User’s Guide

API Functions Summary

Version Checking

GetDllVersion Returns the DLL version information.

GetDriverVersion Returns the Device Driver version information.

GetFirmwareVersion Returns the Firmware version for the specified device.

Discovery and Detection

GetDeviceCount Returns the number of attached devices.

GetDeviceInfo Generates a list of device information for attached devices.

GetSerialId Obtains a device’s Serial ID string (unique identifier).

DetectDevice Return true if device handle is valid (device present).

Device Handle

OpenDeviceInstance Opens a handle to a specified device instance.

CloseDeviceInstance Closes a device instance handle

OpenDeviceBySerialId Obtains a handle to a device specified by it Serial ID.

I/O Ports

ConfigIoPorts Configures the I/O port bits as Inputs or Outputs

GetIoConfig Reads the current configuration of the I/O pins.

ReadIoPorts Reads from the I/O pins (both inputs and outputs).

WriteIoPorts Writes to the I/O output pins

I2C Transactions

ReadI2c Executes an I2C read transaction.

WriteI2c Executes an I2C write transaction.

Debug Buffer

ReadDebugBuffer Read the contents of the debug buffer.

Copyright © 2001, 2002 DeVaSys 10

September 27th, 2002 USB I2C/IO API User’s Guide

GetDllVersion

The GetDllVersion function is used to obtain the revision information for the API dll file.

WORD _stdcall DAPI_GetDllVersion(void);

Parameters

none

Return Value

A WORD (unsigned long) containing the revision value formatted in binary coded decimal.
high byte = major revision, low byte = minor revision.
a returned value of 0x0201 would represent version 2.01.

Comments

This function provide a simple method for an application to obtain the version of the installed API dll
file. This information can be useful for determining compatibility and for troubleshooting.

See Also

GetDriverVersion, GetFirmwareVersion

Copyright © 2001, 2002 DeVaSys 11

September 27th, 2002 USB I2C/IO API User’s Guide

GetDriverVersion

Important Notice: This function is NOT CURRENTLY IMPLEMENTED.

The GetDriverVersion function is used to obtain the revision information for the USB I2C/IO device
driver file.

WORD _stdcall DAPI_GetDriverVersion(void);

Parameters

none

Return Value

A WORD (unsigned long) containing the revision value formatted in binary coded decimal.
high byte = major revision, low byte = minor revision.
a returned value of 0x0201 would represent version 2.01.

Comments

This function provide a simple method for an application to obtain the version of the installed USB
I2C/IO device driver file. This information can be useful for determining compatibility and for
troubleshooting.

See Also

GetDllVersion, GetFirmwareVersion

Copyright © 2001, 2002 DeVaSys 12

September 27th, 2002 USB I2C/IO API User’s Guide

GetFirmwareVersion

Important Notice: This function is NOT CURRENTLY IMPLEMENTED.

The GetFimwareVersion function is used to obtain the revision information for the firmware
executing on a specific device.

WORD _stdcall DAPI_GetFimwareVersion(HANDLE hDevInstance);

Parameters

HANDLE hDevInstance
A valid device instance handle.

Return Value

A WORD (unsigned long) containing the revision value formatted in binary coded decimal.
high byte = major revision, low byte = minor revision.
a returned value of 0x0201 would represent version 2.01 of the API dll.

Comments

This function provide a simple method for an application to obtain the version of the USB I2C/IO
device firmware that is currently loaded and executing on a specified device. This information can
be useful for determining compatibility and for troubleshooting.

See Also

GetDllVersion, GetDriverVersion

Copyright © 2001, 2002 DeVaSys 13

September 27th, 2002 USB I2C/IO API User’s Guide

GetDeviceCount

The GetDeviceCount function is used to determine how many USB I2C/IO devices are currently
attached.

BYTE _stdcall DAPI_GetDeviceCount(LPSTR lpsDevName);

Parameters

LPSTR lpsDevName
A long pointer to a string, which contains the symbolic name of the device’s driver.
For the generic USB I2C/IO device driver the symbolic name is “UsbI2cIo”.

Return Value

A BYTE (unsigned char) representing the number of attached devices.

Comments

Custom versions of the USB I2C/IO device driver will have different symbolic names.

See Also

GetDeviceInfo

Copyright © 2001, 2002 DeVaSys 14

September 27th, 2002 USB I2C/IO API User’s Guide

GetDeviceInfo

The GetDeviceInfo function is used to obtain a list of all attached USB I2C/IO devices and their
Serial IDs.

BYTE _stdcall DAPI_GetDeviceInfo(LPSTR lpsDevName, LPDEVINFO lpDevInfo);

Parameters

LPSTR lpsDevName
A long pointer to a string, which contains the symbolic name of the device’s driver.
For the generic USB I2C/IO device driver the symbolic name is “UsbI2cIo”.

LPDEVINFO lpDevInfo
A long pointer to an array of device info structures. Information for each detected device will
be written to the buffer, and indexed by the device count.
The device info structure is defined in the dll as:

typedef struct _DEVINFO { // structure for device information
 BYTE byInstance;
 BYTE SerialId[9];
} DEVINFO, *LPDEVINFO;

Return Value

A BYTE (unsigned char) representing the number of attached devices, and the number of entries
written to the array of device info structures pointed to by the lpDevInfo parameter.

Comments

Custom versions of the USB I2C/IO device driver will have different symbolic names.

See Also

GetDeviceCount

Copyright © 2001, 2002 DeVaSys 15

September 27th, 2002 USB I2C/IO API User’s Guide

GetSerialId

The GetSerialId function is used to obtain a devices Serial ID string. The Serial ID uniquely
identifies individual USB I2C/IO devices.

BOOL _stdcall DAPI_GetSerialId(HANDLE hDevInstance, LPSTR lpsSerialId);

Parameters

HANDLE hDevInstance
A HANDLE (long int) to a device instance. Specifies which USB I2C/IO device instance.

LPSTR lpsSerialId
A long pointer to a string, which will be used to store the Serial ID string obtained from the
specified device. USB I2C/IO Serial ID strings are 9 bytes long, including the null termination.

Return Value

A BOOL indicating whether a Serial ID was successfully obtained from the specified device.

Comments

The Serial ID string provides a mechanism for applications to identify, remember, and communicate
with uniquely identified USB I2C/IO devices.

See Also

GetDeviceInfo, OpenDeviceBySerialId

Copyright © 2001, 2002 DeVaSys 16

September 27th, 2002 USB I2C/IO API User’s Guide

DetectDevice

The DetectDevice function is used to determine if a previously opened device is still attached.

BOOL _stdcall DAPI_DetectDevice(HANDLE hDevInstance);

Parameters

HANDLE hDevInstance
A HANDLE (long int) to a device instance. Specifies which USB I2C/IO device instance.

Return Value

A BOOL indicating whether the device is still attached (TRUE when device is attached).

Comments

This function provides a fast mechanism for monitoring device connection/disconnection. It
generates a call to the device driver, but does not generate any USB traffic.

See Also

OpenDeviceInstance, OpenDeviceBySerialId

Copyright © 2001, 2002 DeVaSys 17

September 27th, 2002 USB I2C/IO API User’s Guide

OpenDeviceInstance

The OpenDeviceInstance function is used to obtain a handle to a specific instance of a device driver.

HANDLE _stdcall DAPI_OpenDeviceInstance(LPSTR lpsDevName, BYTE byDevInstance);

Parameters

LPSTR lpsDevName
A long pointer to a string, which contains the symbolic name of the device’s driver.
For the generic USB I2C/IO device driver the symbolic name is “UsbI2cIo”.

BYTE byDevInstance
A byte representing the device instance. The first device attached is usually device instance 0,
the 2nd is usally 1, etc.

Return Value

A HANDLE (long int) to the specified device instance. The handle should always be compared to the
value INVALID_HANDLE_VALUE to determine if a valid handle was obtained.

Comments

Custom versions of the USB I2C/IO device driver will have different symbolic names.

See Also

OpenDeviceBySerialId, CloseDeviceInstance, GetDeviceCount, GetDeviceInfo

Copyright © 2001, 2002 DeVaSys 18

September 27th, 2002 USB I2C/IO API User’s Guide

CloseDeviceInstance

The CloseDeviceInstance function is used to close a handle to a device driver instance.

BOOL _stdcall DAPI_CloseDeviceInstance(HANDLE hDevInstance);

Parameters

HANDLE hDevInstance
A HANDLE (long int) to a device instance. Specifies which USB I2C/IO device instance.

Return Value

Returns a non-zero value to indicate success, zero to indicate failure.

Comments

Applications should close all open device handles before exiting.

See Also

OpenDeviceInstance, OpenDeviceBySerialId

Copyright © 2001, 2002 DeVaSys 19

September 27th, 2002 USB I2C/IO API User’s Guide

OpenDeviceBySerialId

The OpenDeviceBySerialId function is used to obtain a handle to a device specified only by it’s Serial
ID string.

HANDLE _stdcall DAPI_OpenDeviceBySerialId(LPSTR lpsDevName, LPSTR lpsDevSerialId);

Parameters

LPSTR lpsDevName
A long pointer to a string, which contains the symbolic name of the device’s driver.
For the generic USB I2C/IO device driver the symbolic name is “UsbI2cIo”.

LPSTR lpsDevSerialId
A long pointer to a string, which contains the Serial ID string identifying the device to be
opened.
USB I2C/IO Serial ID strings are 9 bytes long, including the null termination.

Return Value

A HANDLE (long int) to the device instance corresponding to the device identified by Serial ID. The
handle should always be compared to the value INVALID_HANDLE_VALUE to determine if a valid
handle was obtained.

Comments

Custom versions of the USB I2C/IO device driver will have different symbolic names.

See Also

OpenDeviceInstance, CloseDeviceInstance, GetDeviceCount, GetDeviceInfo

Copyright © 2001, 2002 DeVaSys 20

September 27th, 2002 USB I2C/IO API User’s Guide

ConfigIoPorts

The ConfigIoPorts function is used to configure the I/O port bits as inputs or outputs.

BOOL _stdcall DAPI_ConfigIoPorts(HANDLE hDevInstance, ULONG ulIoPortConfig);

Parameters

HANDLE hDevInstance
A HANDLE (long int) to a device instance. Specifies which USB I2C/IO device instance.

ULONG ulIoPortConfig
An unsigned long specifying the desired configuration for the I/O port bits.

The bit mapping is a follows:

0x000CBBAA
Where C, B, and A correspond to the port bits
byte[0] bits 7..0 = Port A bits 7..0 configuration value
byte[1] bits 7..0 = Port B bits 7..0 configuration value
byte[2] bits 3..0 = Port C bits 7..4 configuration value (Port C bits 3..0 are reserved)
byte[2] bits 7..4 = reserved
byte[3] bits 7..0 = reserved

For all bits, a 1 indicates configuration as Input, a 0 indicates configuration as Output

Return Value

Returns a non-zero value to indicate success, zero to indicate failure.

Comments

A valid device instance handle must be obtained prior to calling ConfigIoPorts.

See Also

GetIoConfig, ReadIoPorts, WriteIoPorts

Copyright © 2001, 2002 DeVaSys 21

September 27th, 2002 USB I2C/IO API User’s Guide

GetIoConfig

The GetIoConfig function is used to read the configuration of the I/O port bits.

BOOL _stdcall DAPI_GetIoConfig(HANDLE hDevInstance, LPLONG lpulIoPortConfig);

Parameters

HANDLE hDevInstance
A HANDLE (long int) to a device instance. Specifies which USB I2C/IO device instance.

LPLONG lpulIoPortConfig
A long pointer to an unsigned long specifying the location to store the I/O port configuration
data read from the USB-I2CIO board.

The bit mapping is a follows:

0x000CBBAA
Where C, B, and A correspond to the port bits
byte[0] bits 7..0 = Port A bits 7..0 configuration value
byte[1] bits 7..0 = Port B bits 7..0 configuration value
byte[2] bits 3..0 = Port C bits 7..4 configuration value (Port C bits 3..0 are reserved)
byte[2] bits 7..4 = reserved
byte[3] bits 7..0 = reserved

For all bits, a 1 indicates configuration as Input, a 0 indicates configuration as an Output.

Return Value

Returns a non-zero value to indicate success, zero to indicate failure.

Comments

A valid device instance handle must be obtained prior to calling ConfigIoPorts.

See Also

ConfigIoPorts, ReadIoPorts, WriteIoPorts

Copyright © 2001, 2002 DeVaSys 22

September 27th, 2002 USB I2C/IO API User’s Guide

ReadIoPorts

The ReadIoPorts function is used to read the I/O port pins. The state of all pins are read,
regardless of whether the pins are configured as inputs or outputs.

BOOL _stdcall DAPI_ReadIoPorts(HANDLE hDevInstance, LPLONG lpulIoPortData);

Parameters

HANDLE hDevInstance
A HANDLE (long int) to a device instance. Specifies which USB I2C/IO device instance.

LPLONG lpulIoPortData
A long pointer to an unsigned long specifying the location to store the data read from the I/O
ports.

The bit mapping for the read data is as follows:

0x000CBBAA
Where C, B, and A correspond to the port bits
byte[0] bits 7..0 = Port A bits 7..0 data value
byte[1] bits 7..0 = Port B bits 7..0 data value
byte[2] bits 3..0 = Port C bits 7..4 data value (Port C bits 3..0 are reserved)
byte[2] bits 7..4 = reserved
byte[3] bits 7..0 = reserved

Return Value

Returns a non-zero value to indicate success, zero to indicate failure.

Comments

A valid device instance handle must be obtained prior to calling ReadIoPorts.

When configured as inputs, the I/O pins “float” and will produce intermittent values unless they are
driven high or low by external circuitry.

See Also

ConfigIoPorts, GetIoConfig, WriteIoPorts

Copyright © 2001, 2002 DeVaSys 23

September 27th, 2002 USB I2C/IO API User’s Guide

WriteIoPorts

The WriteIoPorts function is used to write to the I/O port pins which are configured as outputs.

BOOL _stdcall DAPI_WriteIoPorts(HANDLE hDevInstance, ULONG ulIoPortData, ULONG
ulIoPortMask);

Parameters

HANDLE hDevInstance
A HANDLE (long int) to a device instance. Specifies which USB I2C/IO device instance.

ULONG ulIoPortData
An unsigned long specifying the data to write to the I/O ports.

The bit mapping for the write data is as follows:

0x000CBBAA
Where C, B, and A correspond to the port bits
byte[0] bits 7..0 = Port A bits 7..0 data value
byte[1] bits 7..0 = Port B bits 7..0 data value
byte[2] bits 3..0 = Port C bits 7..4 data value (Port C bits 3..0 are reserved)
byte[2] bits 7..4 = reserved
byte[3] bits 7..0 = reserved

ULONG ulIoPortMask
An unsigned long specifying the data mask to use when modifying the I/O ports outputs. The
mask value allows a Read-Modify-Write operation to occur at the firmware level, which frees
the application software from having to maintain an image of the ports, and reduces USB
traffic.

The bit mapping for the mask is as follows:

0x000CBBAA
Where C, B, and A correspond to the port bits
byte[0] bits 7..0 = Port A bits 7..0 mask value
byte[1] bits 7..0 = Port B bits 7..0 mask value
byte[2] bits 3..0 = Port C bits 7..4 mask value (Port C bits 3..0 are reserved)
byte[2] bits 7..4 = reserved
byte[3] bits 7..0 = reserved

Return Value

Returns a non-zero value to indicate success, zero to indicate failure.

Comments

A valid device instance handle must be obtained prior to calling WriteIoPorts.

Only port bits which were previously configured as outputs are written.

If you are confused by the “ulIoPortMASK” parameter, you can simply set it to 0xFFFFFFFF and
always modify the value of all pins which are configured as outputs.

All of the I/O pins default to inputs upon power-up and “float”. This makes it possible to set a
“default state” for any pins that will eventually be used as outputs, by simply connecting a pull-up
or pull-down resistor.

See Also

ConfigIoPorts, GetIoConfig, ReadIoPorts

Copyright © 2001, 2002 DeVaSys 24

September 27th, 2002 USB I2C/IO API User’s Guide

ReadI2c

The ReadI2c function is used to execute an I2C read transaction.

LONG _stdcall DAPI_ReadI2c(HANDLE hDevInstance, I2C_TRANS * TransI2C);

Parameters

HANDLE hDevInstance
A HANDLE (long int) to a device instance. Specifies which USB I2C/IO device instance.

I2C_TRANS * TransI2C
A pointer to an I2C_TRANS structure. The I2C_TRANS structure is used to specify the details
of an I2C transaction (device address, number of bytes, etc.).

The I2C_TRANS structure is defined in the dll header file as follows:

typedef struct _I2C_TRANS {
 BYTE byTransType;
 BYTE bySlvDevAddr;
 WORD wMemoryAddr;
 WORD wCount;
 BYTE Data[256];
} I2C_TRANS, *PI2C_TRANS;

Return Value

On success, returns the number of bytes successfully read from the specified I2C device.
On failure, returns a negative number.

Comments

A valid device instance handle must be obtained prior to calling the ReadI2c function.

The read data is written to the TransI2c.Data buffer.

The maximum number of bytes per transfer is currently limited to 64, not 256 as implied by the
definition of the I2C_TRANS structure.

See Also

WriteI2c

Copyright © 2001, 2002 DeVaSys 25

September 27th, 2002 USB I2C/IO API User’s Guide

WriteI2c

The WriteI2c function is used to execute an I2C write transaction.

LONG _stdcall DAPI_WriteI2c(HANDLE hDevInstance, I2C_TRANS * TransI2C);

Parameters

HANDLE hDevInstance
A HANDLE (long int) to a device instance. Specifies which USB I2C/IO device instance.

I2C_TRANS * TransI2C
A pointer to an I2C_TRANS structure. The I2C_TRANS structure is used to specify the details
of an I2C transaction (device address, number of bytes, etc.).

The I2C_TRANS structure is defined in the dll header file as follows:

typedef struct _I2C_TRANS {
 BYTE byTransType;
 BYTE bySlvDevAddr;
 WORD wMemoryAddr;
 WORD wCount;
 BYTE Data[256];
} I2C_TRANS, *PI2C_TRANS;

Return Value

On success, returns the number of bytes successfully written to the specified I2C device.
On failure, returns a negative number.

Comments

A valid device instance handle must be obtained prior to calling the WriteI2c function.

The write data is obtained from the TransI2c.Data buffer.

The maximum number of bytes per transfer is currently limited to 64, not 256 as implied by the
definition of the I2C_TRANS structure.

See Also

ReadI2c

Copyright © 2001, 2002 DeVaSys 26

September 27th, 2002 USB I2C/IO API User’s Guide

ReadDebugBuffer

The ReadDebugBuffer function is used to read debug data from the device.

LONG _stdcall DAPI_ReadDebugBuffer(LPSTR lpsDebugInfo, HANDLE hDevInstance, LONG
lMaxBytes);

Parameters

LPSTR lpsDebugInfo
A long pointer to the string where the debug information will be written.

HANDLE hDevInstance
A HANDLE (long int) to a device instance. Specifies which USB I2C/IO device instance.

LONG lMaxBytes
A long indicating the maximum number of bytes that can be written to lpsDebugInfo.

Return Value

On success, returns the number of bytes successfully read from the debug buffer.
On Failure, returns –1.

Comments

A valid device instance handle must be obtained prior to calling the ReadDebugBuffer function.

See Also

None

Copyright © 2001, 2002 DeVaSys 27

September 27th, 2002 USB I2C/IO API User’s Guide

I2C Transactions

Copyright © 2001, 2002 DeVaSys 28

September 27th, 2002 USB I2C/IO API User’s Guide

Overview

The USB I2C/IO API provides a set of ‘C’ functions for communicating with devices that implement
an I2C interface. The API is implemented at a “transaction” level in order to shield the user from
having to deal with the details of I2C communications (start bits, stop bits, ack, nak, etc.).

The API provides support for the following tasks:

• Reading data from I2C slave devices.
• Writing data to I2C slave devices.

Comments

The USB-I2C/IO implements a “Single Master” I2C interface.
The USB- I2C /IO performs it’s I2C signaling at 90Kbps.
The USB- I2C /IO cannot be configured as an I2C “Slave”.
The USB- I2C /IO does not provide any I2C “bus monitoring” functionality.
The USB- I2C/IO board incorporates a 16KB I2C eeprom which must be accessible to the onboard
micro-controller for normal board operation. The user should not attach conflicting or interfering
devices to the I2C connector. The eeprom is at address I2C address 0xA2.

Implementation

Our approach to I2C is really very simple.

The user defines an I2C transaction by declaring an instance of a packed structure of type
I2C_TRANS (defined in the file "usbi2cio.h").

typedef struct _I2C_TRANS {
 BYTE byTransType;
 BYTE bySlvDevAddr;
 WORD wMemoryAddr;
 WORD wCount;
 BYTE Data[256];
} I2C_TRANS, *PI2C_TRANS;

The I2C_TRANS structure consists of member variables that provide support for most I2C
transactions.

There is a member variable for specifying the type of I2C transaction (byTransType). The value of
byTransType can currently be set to one of the following enumerated values:

I2C_TRANS_NOADR
I2C_TRANS_8ADR
I2C_TRANS_16ADR.
I2C_TRANS_NOADR_NS.

Basic I2C devices will normally use the I2C_TRANS_NOADR value. Memory devices will use either
the I2C_TRANS_8ADR (8 bit extended addressing, small memory devices), or I2C_TRANS_16ADR
(16 bit extended addressing, larger memory devices). The I2C_TRANS_NOADR_NS transaction is
identical to the I2C_TRANS_NOADR transaction with the exception that STOP signaling at the end of
the transaction is suppressed, allowing custom transaction protocols to be built from two or more
sequential transactions.

Copyright © 2001, 2002 DeVaSys 29

September 27th, 2002 USB I2C/IO API User’s Guide

Copyright © 2001, 2002 DeVaSys 30

The member variable "bySlvDevAddr" is used for specifying the value of the "Control Byte" for the
I2C transaction. The control byte of an I2C transaction contains several bit fields. These fields are
used to identify the specific device for the transactions (bits 7-1), and whether the transaction is a
read or write operation (bit 0). The value of the read/write bit is automatically set or cleared by the
API software as required to perform the specified transaction. Your software should use a zero
value at all times for the read/write bit. The device address is specified by setting/clearing bits 7
through 1. If you are trying to communicate with a device who's control byte is 0101000x (binary,
where x is the read write bit), you would specify a value of 0x50 for bySlvDevAddr. No bit shifting
is performed on the bySlvDevAddr value.

The member variable "wMemoryAddr" is used for specifying the value of the memory address within
the device. When byTransType is set to I2C_TRANS_NOADR or I2C_TRANS_NOADR_NS, the
member variable wMemoryAddr is unused. When either I2C_TRANS_8ADR or I2C_TRANS_16ADR is
specified, wMemoryAddr is used to specify the 8 or 16 bit extended memory address for the
transaction.

The member variable "wCount" is used for specifying the number of bytes to be read or written
during the transaction. I2C transactions are currently limited to 64 bytes of data.

The member variable "Data" is a 256 byte buffer, which stores the read/write data for the
transaction. When performing an I2C write transaction, the data to be written is placed in the Data
array (by the user application) before performing the write transaction. For read transactions, the
read data is placed in the Data array by our software, and is available to the user application after
performing the read transaction. Note: While the structure is currently defined with a 256 byte data
array, transactions are currently limited to 64 bytes of data.

The I2C transactions are executed by calling one of two functions, DAPI_ReadI2c() or
DAPI_WriteI2c(). These functions require two parameters, a handle to the USB I2C/IO board which
will execute the transaction, and a pointer to the I2C_TRANS structure instance. Both functions
return a LONG value (long integer) which should be the same value as what was specified for
wCount prior to make the call (on a successful transaction). The return value will be negative for
unsuccessful calls.

Typical I2C operation would require the following steps.

• Declare an instance of a board handle.
• Open a handle to the board.
• Declare an instance of an I2C_TRANS structure.
• Initialize the member variables of the structure as appropriate for the desired I2C

transaction.
• Call either the ReadI2c() or WriteI2c() functions, passing the board handle and the address

of the I2C_TRANS structure instance.
• Upon returning from the ReadI2c or WriteI2c call, compare the returned value to wCount,

they should be equal.
• If a read was performed, the read data will be stored in the Data array of the I2C_TRAN

structure instance.

	Table of contents
	Introduction
	Revision History
	Summary
	Scope

	Tutorial
	Devices, device driver instances, and handles
	An example Win32 console application

	API Functions
	API Overview
	Comments

	API Functions Summary
	Version Checking
	Discovery and Detection
	Device Handle
	I/O Ports
	I2C Transactions
	Debug Buffer

	GetDllVersion
	Parameters
	Return Value
	Comments
	See Also

	GetDriverVersion
	Parameters
	Return Value
	Comments
	See Also

	GetFirmwareVersion
	Parameters
	Return Value
	Comments
	See Also

	GetDeviceCount
	Parameters
	Return Value
	Comments
	See Also

	GetDeviceInfo
	Parameters
	Return Value
	Comments
	See Also

	GetSerialId
	Parameters
	Return Value
	Comments
	See Also

	DetectDevice
	Parameters
	Return Value
	Comments
	See Also

	OpenDeviceInstance
	Parameters
	Return Value
	Comments
	See Also

	CloseDeviceInstance
	Parameters
	Return Value
	Comments
	See Also

	OpenDeviceBySerialId
	Parameters
	Return Value
	Comments
	See Also

	ConfigIoPorts
	Parameters
	Return Value
	Comments
	See Also

	GetIoConfig
	Parameters
	Return Value
	Comments
	See Also

	ReadIoPorts
	Parameters
	Return Value
	Comments
	See Also

	WriteIoPorts
	Parameters
	Return Value
	Comments
	See Also

	ReadI2c
	Parameters
	Return Value
	Comments
	See Also

	WriteI2c
	Parameters
	Return Value
	Comments
	See Also

	ReadDebugBuffer
	Parameters
	Return Value
	Comments
	See Also

	I2C Transactions
	Overview
	Comments

	Implementation

